Scientists to build instruments with finer resolution

ISLAMABAD   –  Study co-led by Berkeley Lab and Columbia Engineering could lead to simple, high-resolution bioimaging in real time by overcoming a fundamental property of light. Since the earliest microscopes, scientists have been on a quest to build instruments with finer and finer resolution to image a cell’s proteins – the tiny machines that keep cells, and us, running. But to succeed, they need to overcome the diffraction limit, a fundamental property of light that long prevented optical microscopes from bringing into focus anything smaller than half the wavelength of visible light (around 200 nanometers or billionths of a meter) – far too big to explore many of the inner-workings of a cell.For over a century, scientists have experimented with different approaches – from intensive calculations to special lasers and microscopes – to resolve cellular features at ever smaller scales. And in 2014, scientists were awarded the Nobel Prize in Chemistry for their work in super-resolution optical microscopy, a groundbreaking technique that bypasses the diffraction limit by harnessing special fluorescent molecules, unusually shaped laser beams, or sophisticated computation to visualize images at the nanoscale.Now, as reported in a cover article in the journal Nature, a team of researchers co-led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Columbia University’s Fu Foundation School of Engineering and Applied Science (Columbia Engineering) has developed a new class of crystalline material called avalanching nanoparticles (ANPs) that, when used as a microscopic probe, overcomes the diffraction limit without heavy computation or a super-resolution microscope.

Follow the PNI Facebook page for the latest news and updates.

close